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Abstract

A theory of a-posteriori estimates for the finite element method was
developed earlier by the authors. Based on this theory, for a two-point
boundary value problem the existence of a unique optimal mesh distribution
is proved and its properties analyzed. This mesh is characterized in
terms of certain, easily computable local error indicators which in turn
allow for a simple adaptive construction of the mesh and also permit the
computation of a very effective a-posteriori error bound. While the error
estimates are asymptotic in nature, numerical experiments show the results
to be excellent already for 10% accuracy. The approacies are not re=-
stricted to the model problem considered here only for clarity; in fact,
they allow for rath r straightforward extensions to more general problems

in one dimension as well as to higher order elements.




1, Introduction
For the numerical solution of boundary value problems by finite-element

techniques, the construction of optimgl, or near-optimal meshes is of con-
siderable practical importance. The same can be said when finite~difference
or collocatinn methods are used. Many articles in the literature deal with
questions that bear a relation to this problem, yet, as observed in [15],
even for two~point boundary value problems relatively few address it directly.
We shall not attempt to survey this literature.

There are various analyses of the approximation error of a given func-
tion by piecewise polynomials with a fixed number of pieces of fixed order
(see, e.g., (7], (8], [10], [12], (21] and the references cited there). In
principle, such studies may relate to the finite element method since that
method leads to optimal approximations under the energy norm. The mentioned
error estimates involve higher derivatives of the given function. With
these results as a basis, a number of authors developed methods for the
construction of optimal meshes for collocation and finite-difference methods
({11}, (13], (14], C17], [22], (23])., For this the needed information about
the derivatives of the solution is obtained from the approximate solution,
for instance, by means of difference fomul;s. This procedure can be theo~
retically justified in the case of regular meshes (see, e.g., [20]), How-
ever, vhen there are abrupt changes in thi mesh~-as they arise with refine~
ment techniques--then "internal boundary layers" appear in the error function
(see, e.g., (2], [6]), and hence the difference formulas cease to approximate
well the desired derivatives,
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Various results on optimizing finite element meshes have appeared in
the engineering literature. Without entering into any details, we mention,
for instance, the articles (9], (18], (191, [25], (26], and (271,

In recent year, for initial value problems for ordinary differential
equations very effective procedures have besen designed and analyzed for
adapting the stepsizes and the order of the numerical methods (see, e.g.,
the survey [15]). The principal tool is the availability of an error
analysis with a local, a-posteriori character. These estimates are
asymptotic in nature; yet practical experience has proved their relia-
bility for reasonable tolerances.

In this paper we use a new approach to the construction of optimal
finite element meshes. It is based on a theory of a-posteriori estimates
for the finite element method developed in [3], (4] (see also [5]). As
in the case of the initial value problems, the estimates are asymptotic
in character. More specifically, higher-order terms in the maximal mesh-
size R are neglected; that is, asymptotic expressions of the form
1 + o(1) as i + 0 are considered to be approximately equal to one. At the
same time, all constant factors of these (1+o(l))~terms can be evaluated
computationally,

For clarity of presentation, we restrict the discussion to a simple
two=-point boundary value problem involving a linear, self-adjoint operator
of second order. Moreover, for simplicity, we employ only piecewise linear
elements, The approaches allow for rather straightforward extensions to a
variety of more general problems in one dimension, and there are no essen-
tial limitations to the use of higher-order elements. In fact, analogous
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techniques even permit consideration of elements of different order in
different parts of the mesh,

Continuous mesh distribution functions are used to prove the existence
of a unique, optimal mesh distribution and to analyze its properties. In
particular, it is shown that the value of the optimal error is rather
stable under perturbations of the optimal mesh, Hence it is indeed un-
necessary to compute this mesh with excessive accuracy., The optimal mesh
is characterized in terms of certain easily computable local error indica-
tors. This allows for a simple adaptive method to construct that mesh
(see [4]) and, at the same time, to compute very effective a-posteriori
error bounds, Although, as mentioned, the error estimates have only
asymptotic character, numerical experience shows that, as in the case of
initial value problems, the results are excellent already for accuracies
of the order of ten percent.




2. Notation

let I = I(a,B), @ < B, be the open interval {x € Rl; o < x < B} and
I = I(a,B) its closure. As usual, HO(I) denotes the space of square-
integrable functions on I and CO(I) c HO( I) the subspace of continuous
functions on I. The norms on HX(I) and CXI) will be written as
(lelly and gll_, respectivaly.

Define E(I) as the space of real, infinitely differentiable functions
on I for which all derivatives have continuous extensions on I. Moreover,
let !(I) < E(I) be the subspace of all functions with compact support in I.
For any integer k 3 1, the spaces Hk(I) and C'k (I) are the completions of

E(I) under the norms

k i
2 . du 2
and
X dlu
(2'2) ]”u“C,k - igo I"?‘;-I ”C s

respectively. Analogously, the completions of D(I) wunder these two norms
are the spaces HJS(I) and Cg(I).

Let a,b € CU(I) be given such that a(x) 3a >0, b(x) 0, ¥x €I
Then E(I) and EO(I) shall be the spaces Hl(I) and H%(I), respectively.

with their norm replaced by
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(2.3) Aol = 0 f @Pmdad, @ = .
I

If bz Oon I, then (2.3) is only a seminorm on E(I). On the other hard,
on EO(I), (2.3) is always a norm which, moreover, is equivalent to IH-Ill.

Obviously, EO(I) is a Hilbert space and for b # 0 the same is true for

E(I). We denote the imner product in either space by I(. ")B' Forb=0
on I, E(I) is a Hilbert space modulo the constant functions.

Oon I = I(o,B) we consider partitions
(2.4) A('):a=x%<x§<...<xﬁl_l<xﬁ=6,m=m(A)21,

and introduce the notations

- A A
Ij(A) - I(xj“l’xj) '
A J=1,2,.00m
2. h. T X, - X,
(2.5) J(A) X5 = X5
h(A) = max  h.(8), h(A) =  min  h,(A)
j21,e00,m 3 351yee.,m 3

All partitions A which for fixed A > 0, ¥k 3 1 satisfy

(2.6) h(A) > An()*

are said to be (A,k)-regular.

For given & = A(I), we denote by S(I,4) ¢ H'(I) and Sy(I,8) ¢ HL(I) the
subcpaces of all functions for which the resteriction to any Ij(A), J=1,00.,m,
is linear. Analogously Pk(I,A) < Hl(I) and PJS(I,A) c H%(I), k 3 0, shall con-

sist of the functions for which the restrictions to Ij 4, j=1,...,m, belong

to Ck(Ij).
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For later use we note the following well-inown lemma (see, e.g., [2%]):

Lemma 2.1:

For given I = I(a,8), a < B, and A = A(I) there exists a posi-

tive constant K such that

2.7)

inf
weSO(I,A)

R 1
sl « KR ull, ¥ u € B(D) 0 BL(D .
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3. A Boundary Value Problen

3.1 Basic Formu:lation

As mentioned in the introduction, we restrict the discussion to a
simple model problem. For ease of notation, the unit interval I = I(0,1)
is used from now on throughout the remairder of the paper. On I we
consider the equation

(3.1 Liul = - ad(- a(x) % + bGOu = £6I), x € T(0,1) ,
together with the boundary conditions
(3.2) u(0) =u@) =0 .

We assume that a € C2(I), b,f € Cl(I), and, as before, that a(x) > a > 0,
b(x) 3 0, Vx €1

The weak solution of the problem is the unique uy € EO(I) with

(3.3) I(uO’V)E = Ff(v), Vve EO(D
where
(3.4) Felv) = { fvdx .

Note that under our differentiability assumptions about a,b,f the solution
U, of (3.3) belongs to C3(I) and also satisfies (3.1/2).
With the partition A and the space SO(I,A) c HlD(I) specified as in

Section 2, we consider the finite element solution u, € SO(I,A) defined by
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(3.5) I(uA,v)E = Pf(v), Vve SO(I,A) .
Since uy € KD N ut(x), it then follows from Lemma 2.1 that
(3.6) I[]uA-uoﬁE £K ﬁ(A)IIIuOII2 .

3.2 A-Posteriori Error Analysis

We consider the residual r = L(u,)-f on the intervals I, that is,
3.7) rj(x) = (L(uA)-f)(x), V x € Ij’ j=1,e..m .

Let zj S Eo(Ij) be the solutions of

(3.8) Ij(zj,v)E = I‘rj(v), Vve EO(Ij), jJ=1,...4m
and set
m
(3.9) 28)? = P I_Ilzjllé .
37173
The following result was proved in [3 ]:
Theorem 3.1: The error e = u, - ug satisfies
(3.10) Jlel? = 28)2140(R®))) as Fd) » 0,

where the constant in the bound of the O=term dependson a and b
but noton £ and A.
We analyze the quantity Z(a) of (3.9) in some more detail. Because

u, is linear on any Ij’ we may weite

= -f = -g'y! - = p. .
(3.11) rj L(uA)f a'uy +buA f p3+'cJ,




where

(3.12) pj(x) = a(x)u'(;(x), 'rj(x) = —a'(x)e'(x) + b(x)e(x), ¥V x € I. .

Let ‘pj’*j € Eo(Ij) be such that

(a) I.("’j’V)E = Fp_(v), Vve EO(Ij)

J ]
(3.13)

(b) Ij(w]rj,v)E = F'rj(V)’ Vve EO(Ij) s

and theref . = . + V..
onezJ (pJ WJ

The smallest eigenvalue of the differential operator L on Ij with
. 2
zero boundary conditions is bounded below by the smallest eigenvalue am /h§

of the operator -13_1:12/dx2 on Ij’_ Hence it follows

from (3.13b) that

2
I.”lelo S Chj I."‘rjllo
] . J
and therefore

- 2 _ 2 2
(3.14) IjlellE = FTJ(WJ.) € IJ”TJHO Ij"\l’jllo € Chj Ij”TjHO .

Here as in subsequent estimates C denotes a generic constant which

has different values in each instance but is independent of the cther essen-

tial variables in the same expression. Now note that

(.18 g fegll = [ atetberiac ¢ [ [a'enrbe) dax < C g el
3 I. I. J
J ]

which together with (3.14%) gives

A g A
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(3.15) Ij!kjmg s Co, Ijmeﬂ;z .
lie imtroduce the guantities
I 2
1 [% 2
R8) = — I 1 sl
| L |
and
2 % 2
(3.17) Q) = Tl -
1Y IE

Fron Theorem 3.1 we obtain — wizh some Jef <1 —

rop? - Ty o ¥ =
fel’ = 2w o) = by 1, (057550514 (130)

[Q(a)2+ch(n)IgegER(a)+Iiea§R(A)2](1+oo‘o)

(Qa)*alel R8N (140H) + (1-a?) llelZR(a) 2 (100(h)

But by (3.16) we have R(A) = O(h) and thus
2 _ 2 =
flellg = (Q(a)+allell R(8))“(1+0(h)) ,
which in turn implies that
(3.20) plellz = QaY(1+0(h)) .

Therefore, in view of (3.10), we have proved the following result:
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Theoren: 3.2: Ler Z{2) axd Q{8) be defined by (3.3) and (3.157, resper-
tively. Then

(3.7 we? = 2 2(WomH)), as Ka) - 0,

where the constant in the bound of the O-UEM denends on a 2 b but
mton f and A.

While approximations of Z(A) can be computed and Q(a) is not readily
accessible, the quantit; Q is better suited than Z for our theoretical
studiez of optimal partitions A.
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4, Optimal Partitions - Case I

In this sectionwerestrictqmselvestothecasewhenua# Oon 1I.
This condition will be removed in Section 5.
4.1 Representations of "N(a)

Recall that under our assumptions about a, b, f we have Uy € C3(I)
andhemen=au5€cl(1).
Lemma 4,1: Suppose that u'é(x) £ 0 for all x € T and set X35.1/2 =
(xjhcj_l)/z, 3.1/2 a(xj-1/2)’ by = n(Ej) where |O(Ej)| 3 naxﬂo(x)l,xﬁj}.
Then

m B
@D =g | § —d—nd |0, as ks v,
j51 3-12 |
where the constant in the bound of the O-term depends on a, b and I"f"c 1°
3

Proof: Set
(4.2) Oj(x) 2 o(x) - BJ., Vx € Ij’ j 2 lyeeeym
ard define °1, j’°2,j € Eo(Ij) as the solutions of

(o

1 1,58

(".3) j = lgoco’m
ch(v), Vve Eo(Ij)

= Faj(v). Vve Eo(Ij)

Ij (°2o§ Wig

respectively, Then we have wj s "lj + °2j'

By assumption there exists a constant oy > 0 such that |e(x)|> Py

for all x € I, and hence that for all sufficiently small h
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5.1
(4.4) ch(x)| OJ- h s ¥V x€ Ij .

Note also that for all x € Ifl

(4.5) 9-5 min{ a(x) x€I } = aJ (1+O(h )), as hJ -0,

Since for any v € EO(Ij)

I.llvll}zz = [ I'[ alx)v' (x)zdx](lm(h;)), as hj +0,
]

it follows from (4.3) and (4.5) that

12
Hw sup |F (v)|
I 1,5 [ven (1) I,V "}:
52
= ede [ sup [ ] vax%/ ](v') dx}](l+0(h )
ia-j v€E (I ) J
i '
J PPTRY
= —= [ &) axd Qs0(h))
4 1 J

]

where ¥ € EO(Ij) is the solution of

" =1, v(x P * v(x ) =

This implies that
-2

[o
J 3 -
(4.6) Ij"" HE 1763 Y hj (1+O(hj)), as hj +0, 3= 1y00eom,

In order to estimate ?, g ve proceed as in the proof of (3.14). The
?
smallest eigenvalue of the operator L on Ij is bounded below by
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2,2 . .
asn /hj’ Hence by (%.3) it follows that
2
u.7) o 12 = F (0, ) s o, .l lo.li, = _232_ o, 12
* 2, ET Te.2,3 TI1.72,301, 5307 . jJjOo°
I3 %) 5 23 152,30 1503 am ;30

which together with (4.4) implies that

(4.8) o, M2 = —Co 5§ h2(140(h,)), as h, * 0, § = 1,eeuym
° o it - * . [ o 9 - se e P

Combining this with (4.6) we obtain--with some |a| = 1--

o N2 = _ o, L2 +2 . lp, I o .12
I, o1l I oy 5" + “Ij"“’l.g"z IJ."’z,J'E * 1 o, 5"E
(u.g)
1 3 3
= ﬂ ;.41/‘; hj(l+0(hj))’ as hj ind 0. j = l,ooo’m ']
J-

By definition (3.,17) of 0(4) this proves the lemma.
A partition A shall he a (E,m)=partition if

(4.10) acxj‘.’) =, 3=0,...,m
for same function
(4.11) & € PP(T,A), EN(x) 2 6 >0, ¥ x € Iis 3= Lyeom () = 0, £ = 1.

Note that any partition A is a (E,m)-partition for the piecewise linear

function & € S(I,4) defined by
(4.12) E) = 3pE ¢ e (e, )y % € Ty 3 = 1yeeuym
mhy T gel j

For a (¥,m)=-partition we have
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(4.13)

=

= I{ E'(t)dt = hjE'(xj_l/z)(lm(hj)), as hy = 0
j

; - where the constant in the bound of the O-term depends on £ but not on m.
In terms of (E,m)-partitions our Lemma 4.1 can be rewritten as follows:

Theorem 4.2: For the (E,m)-partition A we have

1 2
2_ 1 p(x) 1 -
(4.24) Q€A -—712111 [of(.,m . ) T dx](1+O(E(A))), as h(a)» 0

where the constant in the bound of the O-term depends on a, b, f and &
but not on m.

Because p € Cl(I) and 1/&' € Pl(I,A), the proof follows directly from
the fact that the expression for Q(L\)2 in Lemma 4.1 is a Riemann sum of
(4.14),

By combining Theorems 3.1, 3.2, and 4,2 we obtain the following result:

Theorem 4.3: For the (§,m)-partition A the error satisfies

1 2
21 p(x) 1 -
(4.15) I"e”E 2 —712m [OI (mx ) 63 dx] (1+0(h(a))), as h(a) + 0

where the constant in the bound of the O-term depends on a, b, f and &

ut not on m,

4,2 Optimal Partitions

The error formula of Theorem 4.3 suggests that we consider minimizing
the variational integral

1 (x) 2 1
(4.16a) Jey = [ (E""TT) o7 &




subject to the boundary conditions
(4.16Db) g(0) = 0, EQ(1) =1 .

The Buler equation is directly solvable and the functions

X (t)2 1/3
(4.17) E(Xgy) = v I[&-ﬂ-] dt, x €1,
0

form a field of extremals in 0 < x, vy < 1. A standard application of the
E-function test (see, e.g., [1]) then proves the following result:
Theorem 4.4: For all functions (4.10) we have

(4.18) Je&) 2 I = l/vg

where &, = &(.,¥ ) with

1l 21 1/3
o(t) -1
[a‘m ] d"] ‘

Moreover, equality holds in (4,18) exactly when & = Eo.

(4.19) Yo * I-([)

-

Note that the function EO belongs to the class of functions (4.11);
in fact, we have &) € C(1) and £1(x) 2 6 > 0 for x ¢ I, because
lotx)!| 2 P in that interval. For the partition 4, given by EO we
obtain from Theorems 4.3 and 4.4 the following error formula,
Theorem 4.,5: The (Eo.m)-partition AO is asymptotically optimal with

(4.20) lle'l2 —-17-3 (1+0(hea o)) as h(a) = 0

lZmY

where the constant in the bound of the N-term depends on EO but not on m.

By "asymptotic optimaiity" we mean here that for any other partition
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with sufficiently small h the error is larger than (4.20).

For any (E,m)-partition A set

2, 1 o) 12 1 . ..
(u.21) "j(g,m) = IZ!-;T {j [m] mdt, J - l,ooo’m (]

These 03’ are related to the functions o of (3.13) by

(4.22) = oj<z,m)2(1+o<hj)), ashy+ 0, §=Luegm.

o, 12
I. E
j ]

This follows directly from the fact that the expression (4.9) for the norms
of wj is--up to a factor (1+O(hj))--a Riemann sum of (4,22).

For the optimal partition 8, we have

2 1 o(1)21/3
6j(€o,m) = = {. [m ] dt
J

12m YO

(4,23)
s '—""]2.-'3' f Ea(t)dt = '—-]3.-'3' s j = lgooc’m .
1m™y, 1. 12m™y
0 7] 0
In other words, for 50 all '9j are exactly equal and==by (4,22)-=all
ilo.ll.. are asymptotically equal.
Ij JE
Since the t’j are not readily computable, we turn now to the quantities

(4.24) uj(E,m) = I."zj"E’ 33 1yeeeym

J
which can be calculated. For the optimal partition by we obtain from

(3.16), (4,13 and Theorem 4,5 that
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2. _1 - = “
(4.25) 1 lhyllp = == (L0(R(3N(O(RC4))), as Ri(ay) + 0
J 12m Yo

where the constant in the O-term depends cn a, b, £ and EO but not on m.
Thus it follows from (4.22), (4.23) and (4.25) that

2 2 1
w (8 m)° = o4 2 = —ry (1+0Ch))
370" IJ J E 12m YO

1 1 =1/2
¥ ey ————rry (1+0(h))0ch™" <)
VIZ m Yo VI? m Y

1 - 1 1/2
¥ (1+o(h))och) = e a+och™" ) .
12m°v 12m°v,

We sumarize this in the following form:

Theorem 4.6: For the optimal partition 8, we have

1/2
o’

(4.26) uj<eo.m>2 . Iﬁ-,-; (1+0R(a Y 2)), as Fitap + 0,
0

where the constant in the bound of the O-term depends on Eo but not on m.
Thus, we see that also the quantities uj(Eo,m) are asymptotically

equal,

From (4,13) we find for the steps h;

3 of the optimal partition 8,

that
a. 1/3
(4.27) Cs ‘1’2} (1+0(2)), asm = =
- [5] aod

and hence that
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with a constant >‘0 that does not depend on m but only on the problem
and P In other words, the optimal partition is ()\O,l)-regular.

Conversely, it turns out that asymptotically the optimal partition
by is characterized by the asymptotic equality of the by This is the
content of the following theorem.

Theorem 4.7: For the partition A suppose that

=1/2

(4.28) |zj<A)nE = w(1+0(h™" “)), as h(a) » 0, § = 1,...,m,

L)
J :
where p does not depend on j. Then

i, =1/2 = .
(4.29) ez = flleCay)iiz(1+0(h™ ), as h(8) » 0, J = 1,...,m,
and
a o =1/2 - .
(4.30) lxj-xj | = 0th™" %), as h(a) - 0, j = 1,...,m.

Proof: We show first that A is (\,1)-regular. For ease of notation let

-2
N 1/2
N, = %2' ;""J—— y 3= 1,0.0,m
) §=1/2

For any j = 1,...,m, we have by (4.9), with some (o] < 1,

2 2
ne - -
Ij ”zj “E - Ij”‘Pj"'Wj ”E -

A - 3/2 = 2
- . . + . » .
nJhJ(l 0(h)) + 2an.h IjINJIIE(1+o<h)) + Ijuwan .

1]
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Let now hj = h. Then (3.16) and (3.6) show that
0
2

|e||E <Ch

I. lleOIIES Ch

1, |
ig j

0

or

(4.32) 1 Il = 52 ofY?), ashi» 0 .
g 0

Hence we obtain from (4.31) and (4.28) that

w20 2y = n§ B3(1+0(R)) + B o ?) + 7S o(R)
0
or
(4.33) u? = n§ R3(1+0(FY %)), as h~ 0 .
0
Now let hj = h. Then we have instead of (4.32)
1

v Iy = n B ED

A P

]1 1
and hence by (4.31), (4.28), and (4.33)

(mwﬁﬁmﬁ%hﬁfmm»m%gm#%&%+ﬁmm.

0 1 1

In other words, z 2. }_1/_}1 satisfies the polynomial equation

=1/2

(4.35) n§ (1+0(RY 2))28 + o(Ryz2 + o(RY/?); ~'n§ (1+0(R)) = 0 .
0

1
By comparing (4.35) with the equation

(4.36) n§ (1+0(RL 2y 58

-2 (o) = 0,
0 ]

1

Rouche's theorem shows that for sufficiently small h we have
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n- \V3
2l = 2 | 2
(4.37) z| < o .

Jo
This shows that A is indeed (X,i)-regular.
Our assumptions about a and p ensure that for any fixed j, 1< j<m,

m
2
iglnihiquj )

We represent A by the piecewise linear function & of (4.12). Then from

Theorems 3.1, 3.2, and Lemma 4.1 it follows that
(4.38) liefl2 = If 2n3 | (1+0(h) = onZR2
‘ TSl 7} L M40 = Cnyh s
and hence, by (3.16) that
2 2 2 2, 2=2 2. 3=
. - = Ch. e~ = On.h:h™ = Cn.h:
(4.39) IjIN'JIIE 3 IjII g anhjh anth s

where in the last inequality the regularity of A was used. Therefore, we
have

3/2,.,21/2
e = MehC
IJ.”‘";”E Mzhy" "0 %)
whence by (4.31)
2 _ 2.3 = =1/2, = q _ 2.3 =1/2
Ij||Zj||E-njhj[(l+0(h))+0(h )+O(h)]-njhj(l+0(h N,

that is, by (4.28)

/2

(4.40) u2 = n:?]hg(lw(ﬁl )) .
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Since

-2
3 1/3 2 1/3
2 - p(t) = =
[mjl hj [——Laj-uz] hy [ J rOR dt] (1+0(h)), as h+ 6 ,

J

(4.40) implies that

3 /3
(4.41) I{[%;g- at = A2y o)
3
which by (4.19) shows that
1 211/3 1/3
1 _f [(t)]” - 2 =1/2
(4.42) L=/ I e = maz®y  asod ) .
Yo o L3t

By (4.38) and (4.:0) we obtain now

Illellé = m2(1+0(l-11/2)) ,

which by (4.42) and Theorem 4.5 gives (4.29). Finally from (4.41) it follows

by summation over the first j intervals
A

X
/3 .
p(t) 3 =1/2

{) [E(E' dt = g (1+0(h*" “)) .
On tte other hand, we obtain from (4.23)

XAO .

{3 o1 3t = 3 v )

o [2® ™o

Thus we have

1/3
l [p(t)z] l - o2

which implies (‘+. 30).




4.3 Computational Aspects

Suppose that the optimal partition func*ion ) is changed to some

partition function g = 50 + ¢ satisfying (4.11). By (4.13a) the derivatives
control the stepsizes, and hence we assume that IIIe:'IIc is small. For any
given m, let I“e“E and I"eOHE be the errors associated with the (&,m)-
partition and (go,m)-par'tit:ion, respectively. Then by Theorem 4.3 and
(4.16a) we have

2 2 1
| el - Llegllz | o(?)w(g)-J(go)l, asm e

Since the variational integral J is stationary at €0 we have J'(EO) =0
and hence it follows from the mean-value theorem that

_ 2
IJ(E)-J(E,O)I = O(Ille'llc).

Therefore, because (4.15) implies that

- nft -
el + legl = o(a), asmse,

we obtain

_f1 V2 _—
| flell, - gl = o(a)fxlna 12 a5 Je'l_+ 0, mo o,

In other words, a change of 5(') by some small IIlt-:'llc leads to a change of
the error proportional to l.Ile'llé. This shows that the value of the optimal
error is rather stable w.der perturbations of the optimal partition. On the
other hand, the optimal partition itself is rot too stable and hence needs

to be ¢omputed only with relatively low accuracy. ;
{

By Theorem 4.7 the optimal partition is characterized by the asymptotic

equality of the quantities ”j = uj(go,m) of (4.24). Let Pj agair. denote
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tilemidmalr=u%)~fonﬁresubixm\a1 Ij and set

(5.43) viz [rofax, j=1,...m.
3 1.3

3
We call the quantities

22
2_1 733 -
(!}.““) ej = Tz.‘al._L b J ] = 1,2,0‘-,n
3-1/2

the ervor indicators for the intervals L5---»L, and set

n
(5.55) e@ = ([ esmHV? .

1
All these quantities are directly cosputable once the finite element solution
is known. The next theorem shows that e(4) 1is asymptotically egual to the
error Iieﬁ,ﬂ.

Theoree 4.8: a) For any partiticn A we have

= e(0)2(140(R)), as R(8) - 0 .

N

(4.46a) Iﬂeg
b) If & is (A,x)- lar, 1 < x < 2, then

(4.46b) v = B?"nj(m(}’f)), as A(8) + 0, §=1,...,m ,

Al N

where ¢ = 1 - «/2.
Proof: a) The definition of Bj given in Lemma 4.1 provides that
‘- = 4 -( 2 - G b}
lo}! Z 103 | 2 o,
3

and by (4.4), (3.15), and (3.6) we have
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Hence by (3.11) and (4.2) we obtain with some Iail <1, i=1,2,3, that

vz [ (puto. (0% (0) 2ax
3 o< 3] J
2 2 2
(4.47) = th (2)9- -O(h ) + _Il'rjllo
1 1/2 3/2
+ 20, L 52h.0(h.) + 2a,p.h} g+ 2 .h3 .
2a; % P3h; (h ) asz s Ijll'cjllo ay = "0 |r>:l 5 Ijlltjllo
With
B?'na m
sw?=2 7 25, ww?s ] |
371 #35-1/2 57175 3
it then foliows that
e®)? = s(0)? + L s(8)’0(i) + T(8)°0(?)
0
s RPN S _ ,
+ 2 5= S(8)°0(R) + 20,5(8) T(8) O(R) + 20,S(AIT(AIOCF ) .
0
This proves (4.4%8a) since by Lemma 4.1 and Theorems 3.1 and 3.2
I
s(a)? Iﬂeﬁr(m(hn, 18’ = ¢ Z = ¢ flelf .
b) For (\,€)-regilar A with 1 < K < 2 we have by (3.6)
il =Cptelp=Chzay/ i .
j j
Hence (4.47) irplies that
vi = e oD + Lo + Lo + Loty + L oi¥Y;
] 3 2 pﬁ [
°0 °g 0 o

shich is (4.46Db).




[
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It may be noted that in [3] we proved an upper bound for I"e"E of
the form (4.46b) with 1/12 replaced by the larger factor 1/n.

Theorem 4.8 states that

(4.48) 8(a) =

) = 1 + 0(h(a)), as h(a) - 0.

In other words, the effectivity quotient 6 tends to one with h -+ 0.

In contrast, the corresponding estimates in [3] only provided for 92 < 12/112.
We expect the error indicators to be asymptotically equal to the

quantities by of (4.24). Theorem 4.9 below shows that this is indeed

correct for regular partitions. Hence our aim is to construct such

partitions for which all ¢ 5 are asymptotically equal. It twmns out that

--as before--these partitions are automatically regular.

Theorem 4.9: (a) Let A be a (\,k)-regular partition withl =k < 2.
Then

2 _ 2 TE =
(4.49) Ij||zj||E = sj(1+0(h )), as h(a) + 0,

Withe=l"K/2o

(b) All partitions A for which
(4.50) &5 = p(1+o(1)) as h(a) =0, j =1,...,m,

with p independent of j, are (A\,l)-regular.
Proof: As in the case of (4.39) it follows from (3.16) and the assumed
regularity of A that

and thus
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IJIlw Ig = nsh J "20(5), as A(a) » 0 .

Now (4.31) shows that

2 2.3 - 2.3, ,-¢ - 2, 3. ,72¢
Jlo = n:hi(1+0(h)) + 2an-K.0 + + nhi
IjlIleIB n3hs (1+0(R)) anH; (R*) (1+0(h)) n3h30G™)
23 =€
= n.h.(1+ .
nJ J(l 0(h™))

Since by Theorem 4.8(b)
(4.51) n2nd = -1——1— e2(+0(FEY)

13 12235, ]

this prcves (4.49).
(b) Because, generally,

it foliows from (4.47) that

+3/2

v .'h (1+0(1" )) + 0(h™ )

u2(1+ 001)) = €2 = n2n3 + nhoRY/?
J 1] ]
Now suppose that (4.50) holds for A and that hj = h; then
(]

W2(1+o(1)) = ,-,3(,,;? oY)y |
0

Similarly, for h. = h we obtain
J1

w2+ o)) = n§ h + n0E )

Y
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and hence z = I/h satisfies
2 405 232% = 2 + oDz .
3o 31
By comparing this with the polynomial for z in which the last term on the
right has been dropped, it follows by Rouche's theorem that
n; 2/3
lz| <2 -—:L-
Jo
for sufficiently small h and therefore that A& is (\,1)-regular.
Theorems 4.9 and 4.7 confirm that, as expected, our aim should be to
construct partitions for which all ey are asymptotically equal. Then the
error of the partition will be close to the asymptotically optimal error
(4.20). A natural approach for this construction is the use of an adaptive
mesh refinement algorithm of the form discussed, for instance, in [4]. We

shall not repeat the details.
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5. Optimal Partitions - Part II

In the previous section we assumed that u'(')(x) # 0 for » € I. Clearly,
this represents a severe restriction. Actually, the results are largely
valid also when u'(.'J has zercos in I, but the proofs become more delicate.
We illustrate the approach for the frequent case when uj € Cl(I) has finitely

many simple roots in I, say,
(5.1) u'o'(ﬁ() = 0, u'"(%() # 0, k = l’ooo,q, 05 El< 52< see %S lo

Lenma 5.1: Under the stated assumptions we have for any (\,k)-regular parti-

tion A withl =k < 2,

-2
(5.2) )’ = 3 ’f %3 13 ] (e0(Rr®), as Bia) » 0
371 3-1/2 1]

where ¢ = 1 - k/2 and the constant in the bound of the O-term depends on

a,band f£.
Proof: Because of (5.1), we may choose cypz ey > 0, 50 > 0, such that

(5.3) cylag ) 2 |pGO] 2 ¢qlx-5 |5 ¥V |%-§ | =63 k= 1,..05q .

For any 6 > 0 we introduce the sets

[ age )
1]

{x€I ’ Ix-akl < 6 for some &, } Ig =TIy Ig »
(5.4)

(Y
"

{3=1ye0 0 m; Ij n 15#0}, Jg = {1,...,m} \15 .
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We assume that 6, = (8q)-l and hence that

Z hj < 2(60+E)q S U64q S %— , forh=<s
:|€J{50

0 L]
Since
min {Ip(x)I,XEIg } = P> 0,
0

the estimate (4.9) of the proof of lLemma 4.1 holds for the subintervals

I. with j € JS ; that is
] 50

2 _ .23 > = . c

Hence for h < 6 o We have

(5.5 Q= [ Z ¥ hj](l+0(h)) CoTRX R,
jeJ 5 jeJ hy 2
0 0
Now consider the sets (5.4) with 6 = h'd2 =8, Then (5.3) implies that

55 2 0 f%, 5 €35,
and hence (4.8) modifies to

1 325

2 2.5 = C
(5.6) Ij"q)Z,j"E <C g;ﬂjhj(l*O(h)) < Cr) :h~, as h(A) - 0, j ¢ J

3

On the other hand we have

lo500] = 2 max |oGo)] < /2, 5 €I,

x€I

whence by (4.7) and (5.5)
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5.7 1 llo, IIE < Ch B (L+0(R)) < CQ(A)thehJ, as R(8) » 0, 3 € I

J

For ease of notation wet

m
sw? = Tnkd, xa?= ] e, 2
: 31 3 371 73 »3°E

Then it follows from (5.6) and (5.7) that

R(@)? = C[ ] n }3]h + QE® 7 h
;,e15 33 jeIs J
(5.8)
< cIs(a)2+q(a) 2152

In the case of Lemma 4.1 the assumption u'd = 0 does not enter into

the proof of (4.6), and thus we have also in the present case
(5.9) lo, <12 = n2n31+0(R)), as R(8) » 0, = 1,evusm
) Ij (pl,JE 33 ? ’ sec ey

and therefore

(5.10) 1. loy 513 = S(?Q%0(F), as Fi=0 .
-1 J

Altogether, with some suitable constants a,R € [-11] it follows from

(5.8) and (5.10) that

, M 2 m 2\ .2 z ' '2 1/2 2
Q) flo, .I5 + 2a o, .1l e + R(A)

S(0)2(1+0(R)) + aCS(8)(1+0(R)) (s(A) 24 HH Y Z5e

+ ac(s(m)2s008)2)R2®

After separating the middle term or. the right and squaring, we obtain the

equation
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cs(8)2¢s(a)2eq(a)HR2e

= Q(8)* (1+0(R2%))-20(8)25(1)2(1+0(F2%)) + S(8)* (1+0(F2®)) ,

which has the solutions

=2¢

A? = s(2+0(R%)) + s *oR2®)1+2, as ha) » 0 ,

and hence proves (5.2).

Now the theory of Section 4 can be carried over t» the
present case. As before, we consider partition functions £, but here we
need to weaken (4.11) by requiring instead of £€'(x) = 6§ > 0 on each Ij
tlat(o(x)/E'(x))ziSRiemam integrable on each subinterval. Moreover, we
assume that for given & and m + = the resulting (£,m)-partitions
are (\,K)eregular with 1 < k < 2.

Then as in the case of Theorem 4.2 it follows tlat

1l 2
2 _ 1 p(x) 1 e TOAY o
(5.11) n(a)" = ;,17 [£ (m) Gy dx] (1+0(h(a) )), as h(a) -0,
where the constant in the bound of the O~term depends on a, b, f and & but
not on m. This suggests again consideration of the variational problems
(4.16a/b) and hence of the optimal partition function Eg of Theorem 4.4,

Clearly

1/2

(x) _ 1
Eg'(,;y = .Y—O (p(x)a(x))

is Riemann-integrable on I.
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We show first that the (Eo,m)-partitions are (\,5/3)-regular. Since
(5.12) |G| 2 Cmin {1,min|x-g |}, ¥x €T,
k

with some C > 0, it follows that

2
ORI EHGL =220, [ 0%z cpd?

2
I. ]
5 j

where again C; > 0. This implies that h < on /S as well as /m = Ch, and

hence the partition is indeed (X,5/3)-regular. Now Theorem 4.5 is easily

shown to hold with 0Ch) replaced by O(hl/s)

For any Ij which intersects Icg with 6 = 7/ ® we can use (5.6)

in the estimates leading to Theorem u4.6 to obtain

. 5
(519 w(gum? = E%_? (1+0(RY®)), as B 0,5 € £, 5= 57° .
m YO

In other words, for the optimel partition the Iy are asymptotically equal
for all intervals which are not too close to a root of u‘d. As the numerical
examples of Section 6 show, the uj( go,m) for the intervals close to roots
are generally larger and the ratio of the largest to the smallest of these
values does not tend to one for m -+ =,

The analog of Tb .7 is somewhat more complicated. We formulate
it as the following theorem.
Theorem 5.2: For the partition A suppose that

(5.14) I.”Zj(A)“E = w(1+0(h®)), as h(a) - 0, j = 1,...,m
]

3

where u does not depend on j and e = 1/12. Then A 1is ()\,5/3)-regular and

(5.15)  ;lle(d)lip = flieapdlly (1+0(R®)),  as h(s) » 0 .
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Proof: 1) We show first that

5/2 .
(5.16) Ij”(pj”E 2 Chj s J = 1yeeesm,

with some C > 0 which depends only on p. From (3.13) it follows that
- 1
Ij“(pj”E z SuP{I—."V"E IIf pXIv(x)dx | V v € EO(Ij)} .
] J

Clearly, for given vy,6 the function

_ .1 1.2 1 2 1 3

belongs to Eo(Ij) and a short calculation shows that

2.3 2
ClaJh If v' (x)%x < Coashss I{ v(x)“dx = Cyas

J ]

2h5
3]
where

a = (Y2+(5hj)2)1/2

and all constants are positive. Hence also

2 3

< Calh)

I]ME 2
Now with

= = = -y A
Y p(xj_l) 6 = pi (x:| 1) PG VJ(X) + pj(x), Vxe Ij
I'bj(x)l z o(hj), as hj +0,

we obtain

Y x €1,
]
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| etoveodx] = [ vieolax - ¢ f beo’aot [ v Zanl/?
. 1. I. I
IJ ] J
whence—-for sufficiently small h--

1/2 5/2
I||¢1|E_c——7—[aho(h.)] 5hs ]

(5.17)

>ca.nd?n-L o(h, )]

JJ aj

By assumption we have
1" 2 1 )2>
(5.18) uo(x) + ug xXz2C>0,Vx¢€TI
and hence also with some C > 0
2 2 2 2 2 2 2
. = + (6h. > h. . + o' (%, > Ch. 0
aJ Y ( J) ](p(xj_l) 0 (xj_l) ) 5 >

which together with (5.17) proves (5.16).

2) Next we show that for sufficiently small hj

5/2

(5.19) IIeHE =2 C h C>0.

llellg 2
II®lg = 1,
j

Obviously, we have
2 1 ' 2,
rlellg z dinf [ aGo) uf)-v'(x)]%ax
j v Ij

where the infimum is taken over all linear functions on Ij’ Thus v'(x)

is constant and it follows that
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L el = cl f utGo2ax - 2 ( / ut ()0’ .
I.7E 0 h. 0
J Ij 143

Since
uo(x) = uo(x 1) (x- )(x X l) -2- 0 (x- )(x-:icj)2
+ o(h?) as h.--»0
37 3 ?

a simple calculation shows that

2,3

L IIehE 2 Cluj(xs_)7h3 + ug"tx ;) ‘r"] - o(l)h- ]
j

Using (5.18) we then obtain (5.19) for sufficiently small hj'

3) Now we can show that A is a (A,5/3)-regular partition. By Theorem 3.1
and (5.14) it follows that

(5.20) el = m 20+w12yy |

and thus bv (5.19) that

(5.21) f<em/® 5.

On the other hand, we have by (5.9), (4.7), (4.4), and (3.16)

=1/12

u(1+0C¢h ))

Ao .
Ijll«pl,3 ¢2,]N’JIIE

(5.22)

3/2 5/2 3/2 1/2
Cln.h:" "+h; <Ch .J .
gt ey g Tell) = ]

A

Let hj = h ard note that m = 1/h, then
0 2
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wso¥? s 12

and hence for sufficiently small h
2/3

(5.23) h2cu’?.

On the other hand, (5.16) and (3.16) give

=1/12 . . o
3 J ]
5/2
.>. C(ho "h- - l’
5 Dy _j.aeHE)
and therefore, by (5.21) and (5.23), for hj = h
0
(5.24) w = CRY 2R m/ 2. » ¥ 273

If the term on the right is positive then, with some positive constant

51/2

(independent of h), z = must satisfy

S 232 ¢,

By Cauchy's rule this implies that

1/2

h

2‘12/ 3)

< max({2cw)Y5, ¢ 3y ¢ M5

since by (5.23) we have p = 1 for sufficiently small h. On the ocher hand,
if the term on the right of (5.24) is negative, then we have immediately

h< pu/g < u2/5. Thus with (5.23) this gives indeed

55/35C3.

4) For the proof of (5.15) let now & = h®. By (5.12) we have nj > Cs for
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jng any hence
2
znh <c(—1) ¥V iedg.

Thus from Lemma 5.1 and Theorems 3.1,3.2 it follows that

1 =2
(5.25) I"e”E =C ?”Jh , V3¢ J

and therefore (3.16) gives

(5.26) I||\y z|E<cihB CJ-h§/2 28<c:qh3/2h, 3 eIl

respectively. Note that in the second inequality the (A\,5/3)-regularity

of A was used. Together with (5.6) and (5.9), (5.26) leads to

Indaro, 3 g,

2
and therefore by (5.14) to

(5.27) u? = njh (L+O(EEY), § € IS .

Hence analogous to (u4.41) we have

dat = (ud)l/3

241/3
at]

(t) =€ . c
(5.28) If [pTT (1+0(F*)), § € Jg

s
Let m and m, denote the cardinalities of Jg and J 5° respec-

tively, that is, m = m; +m,. We want to show that

(5.29) 2= 05 = ORE) .
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For this note first that because of My < C5 for j ¢ J& we have by (5.22)

(5.30) wsceond %nl Bnat 2, 3 € 3
and thus
2/3
(5.31) hy =z C nun«g) , w2 p.2/5) , 3 €,

Suppose first that

then

(5.32) (min h,)1 —27?5/3 5
.3 < 6 (min <=C j €
"2 = ]EJ J ’

Because of n; >0 for j € 15, it follows from (5.27) that

2/3
< L . C
hj_c(ig) . R

and hence

2/3
2 (1~6) (nax b, yL (9) .

Together with (5.32) this proves (5.29) in this case.

2/5

Now suppose that in (5.31) we have hy =2 Cu™ °. Then

J

m, < Cbp.-2/5

#hile (5.24) implies that
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m = Cl-l.Z/s .

Together these estimates show once more that (5.29) holds.
Finally consider the case

-1/2 .
hjZCm /, 3615.

1/2 1/2

mZSCGm =Cﬁ(m1+m2)
or

2 2 2.2

mz-C?Bmz_C&ml.

By applying Rouche's theorem to the pair of polynomials

zz-az-am1=0, zz-am1=0, a=0252

it follows readily that

1/2

m2.<.06ml SCéml.

Thus (5.29) is valid and we have

(5.33) m = m(1+0(FL/12)) |

By definition of Es it follows now from (5.28) and (5.33) that

1 2+41/3
1 p(t)
— dat =

p(t)2 1/3

2,1/3

> ml(12u2)l/ 30140(F9) = m12u®)Y 3(1+0(REY)

S BN apaA v

J e Setsenabiten
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2 1 1 T €

From (5.20) and Theorem 4.5 (modified to the present case) this implies (5.15).

It may be noted that the analogous relation to (4.30), namely,

A
ng-xjol = 0(R®)

is easily proved when there is only one root of up in I. In general, the

situation appears to be more complicated.

Now we turn to the analog of Theorem 4.8.

Theorem 5.3: For any (\,k)-regular partition withl =k < 2

2 2
(5.34) et ) -—Alél- (1+0(h%))
" 17 L 21 85-1/2

where Vs is given by (4.44) and ¢ = 1 - k/2.

Proof: Recall that

2.2
m v.h.,
E(A)2:.l'_ :
12 .2, a.
J=1 73-1/2
Using
vz (huto. (e, ()t
IR s
(5.35) ]

lO' (X), - Ch]’ Ij”TjNO =C Ijl!e”E

we obtain, with certain ICiI S Cyi=1,...,5,
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=23
m
12¢(8)% = ¥ __l_ +C Z h +Cy X I, Ilell
371 %5-1/2 j=1

7/2

+C Z flel X
5 I. E

=1 43 ;

m_ 5/2

By Lemma 5.1 and Theorems 3.1 and 3.2 the first term is asymptotically equal
to 12 Illellé and from (5.5) it follows that IllellE > Ch<. The other terms are

then easily estimated to give--with different constants c; -

1]

- = 2
e = lel21+0(E)) + ¢ flleld R + ¢, lellZ

1/2

TP =2 =1/2 ~2e+1/2

] R (K% el /21 + ¢, pllel2 57+
j=1 73-1/2

Llel2aso@)

which proves (5.34).
Finally, we show that also Theorem 4.9 carries over to this case.

Theorem 5.4: For the partition A suppose that
(5.36) 65 = w(1+0(h®)) as Ri(a) > 0, 3 = 1,0..om ,

where p does not depend on j and ¢ = 1/12. Then 4 is (X,5/3)-regular

and
(5.37) Llle (Ol = flleCaplly 1+0GE")), asm+ = .

Proof: We show first that .4 is (\,5/3)-regular. For this note that generally
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I.Ilzjllf; s % e§(1+0(15)), ash; >0, j=1,...m.
"

]
This follows from (3.8) in the same manner as (3.14) follows from (3.13b).

Thus by Theorem 3.1 and (5.36) we have
2 2
whence by (5.19)

f< le/S U-2/5 .

Now (5.35) gives

- -,1/2..3/2
5.38 . = Ao+, < C(p.h. “+h. “+
( ) vy IjIIp:l o TJIIO (mJ 3 hJ IjIIeIIE)

and thus--as in the case of (5.23)--for sufficiently small h

ns 23

By (5.12) we have

/ p(x)zdxz cnd
I. J
J
and thus

5/2

T Chj(I_II'pII0 - I.IITjII(,) 2 C(h
J ]
leads to (5.24). The remainder of the proof of the regularity of 4 now
proceeds exactly as part 3) of the proof of Theorem S.3.
Similarly the proof of (5.37) follows that of (5.15). In fact, for

j € Jg we have




papi'? V2.1
R :_.J_l .) = -.h. 20 (ile
IleoJIIO 5 0(hy) = pehy S0
Ps
= OF) = o3 112 gr28y - = 4 1/205E
Ij“""juo O(h) = - H'® O(A™) = pshy” “0CA™)

which as in (4.47) leads to

2 - "2 3 € . C
that is,

2 - 2 3 bl . C

T 'r]jhj(l"'O(h )), J¢€ JG .

Therefore (5.28) holds again. Moreover, because of Bj < an we obtain
from (5.38) the estimates (5.30) and (5.31) which in turn imply (5.29).

Now the remaining conclusions of the proof of Theorem 5.4 apply verbatim.
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6. Numerical Examples

We illustrate the theorecical results with some computational results
for the following two sample proble.s.:
Sample Problem A:

(6.1a) --d% (wa)P%w* ta)u = £, G<x<1,a>0,

(6.1b) u(0) = u(l) =0
where f 1is chosen such that the solution of (6.la/b) is
(6.1c)  ug(x) = (xta)’ - [aFCl-3)+(1+c) %], x € I .

Here the coefficient functions and f are aralytic in I , and we have
u'é(x) # 0 for x € I. Hence the theory of Section 4 applies. Note that for
small a and negative r we can create severe near-singularities.

Sample Problem B:

(6.2a) -w"+uz=f, 0<x<l,

(6.2b)  u(0) =u(l) =0

where f is chosen such that the true solution is

(6.2¢c) uo(x) = e™(x-p) + [B(l—x)-ea(l-p)x], a#0,B = 32'-+ &g- .

Here f is analyticon I and ug(x) has a simple root at x = 1/2, and
hence we can apply the theory of Section 5.

The tables of computational results given below include the following
data:
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m number of intervals used in the partition
E= 100I|!eIIE/IIIuOIIE relative error in the energy norm expressed
in percent
Eg = ——137 asymptotically smallest error achieveable
12m Yo with meshes of m intervals
0= IIleIIE/!.L:(A) effectivity quotient (4.39)

o=( max ¢€.)/( min ¢.) ratio between the largest and
J=lyeee,m J J=1yee.m J smallest value of the error indi-
cators ei(A) of (4.38a)

xj partition points of the particular mesh

Tables 1 through 6 concern two cases of sample problem A. Each time the
left endpoint x = 0 of the interval is near a singularity of U, and this
is reflected in the fact that the largest and smallest error indicators ej(A)
always occur on the first and last subinterval Il and Im, respectively.
But in the second case the energv expression includes a weight (x+a)2 which
goes strongly down near x = 0. Thus in this case the near singularity of
the solution shows up more weakly under the energy norm.

In all cases the effectivity quotient is less than one and hence the
estimate €(A) turns out to be an upper bound of I"e"E' Of course, the
theory is only asymptotic in nature and thus €(4) could be smaller than
I”e“E' Note that for relative accuracies better than 10% the estimate never
overshoots the true error by more than 10%. In fact, for higher accuracies
8 equals one for all practical purposes. This is in camplete agreement with

the theory and shows that the a-posteriori error estimate is very reliable
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and not at all pessimistic.

In the presence of the near singularity, the use of nonuniform
meshes is very advantageous (see, e.g., Table 6), and the approximately
optimal meshes produce errors close to the optimal values which by
Theorem 4.5 decrease with 1/m. Here the "weaker" singularity of the
secornd case is rather noticeable. The nonuniform meshes are only approxi-
mately optimal as the ratio « shows which in each case is reasonably
close to one but certainly not equal to it. Nevertheless, as expected,
the corresponding errors are clearly not very sensitive to such changes
of the mesh except for low accuracies.

Tables 7 through 11 contain results for two cases of sample problem B.
Essentially all aspects are the same as for problem A. However, in all
cases the maximal ej occurs in the neighborhood of the root Xy = 1/2
of u'é(x)-, and, as expected, the ratio ® does not converge to one. How-
ever, if o is computed only for all intervals outside a small neighborhood

of X(» then we have again the desired convergence of « to one.
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Table 1
Problem Awithp=0,q =1, r = -1/4, a = 1/100
Uniform mesh, I"uOHE = 6.09811
m E EO ] A
5 85.301 22,613 .1706 8.8u(+6)
10 73.768 11.306 +2950 2.34(+7)
20 58,784 5.653 14702 5.31(+7)
40 41.933 2.827 .6708. 1.11(+8)
80 26,310 1.413 L8419 2,19(+8)
Table 2
Problem Awithp=0,q=1, r = -1/4, a = 1/100
Approximately optimal mesh, I”uOHB = 6,09811
m E EO | 6 W
5 22.243 22.613% .6524 5.854
10 11.289 11.306 . 9025 2.274
20 5.652 5.653 .9757 1.372
40 2.826 2.827 . 9840 1.111
80 1.413 1.413 . 9984 1.031

*Note here the asymptotic nature of the estimate Ey of the lowest

achieveable error.
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Table 3

Problem Awithp=2,q=1,r=-1, a = 1/100

Uniform mesh, I||u0||E = (.28678

m E EO e ®
5 25.215 9.619 .3270 3.227(+3)
10 13.696 4,809 4467 4,.640(+3)
20 7.296 2.u04 .5966 8.316(+3)
40 3.813 1.202 .7610 1.055(+4)
80 1.959 0.601 8947 1.308(+4)
Table 4
Problem Awithp=2,q=1, r=-1, a =1/°00
Approximately optimal mesh, IIIuOIIE = 0,286, ,
m E EO 0 ©
5 9.994 9.619 .7679 3.355
10 4,809 4.809 .9331 1.666
20 2.409 2.404 .9828 1.184
40 1.203 1.202 . 9956 1.048
80 0.601 0.601 .9989 1.012
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Table 5

Problem A: Approximately optimal mesh for m = 10

Case Al: p=0,q=1,r=-1/4, a=1/100
Case A2: p=2,q=1l,r=-./4% a=1/100

3
j Case Al Case A2
0 .0000 .0000
1 .00207 .0127
2 . 00487 . 0340
3 .00877 .0676
b . 01443 L1170
5 .02308 .1862
6 .03732 .2798
7 .06318 4025
8 .11781 .5598
9 .26831 .7569
10 1.00000 1.0000
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Table 6

Problem Awithp = 0, q = 1, r = -1/4, a = 1/100
Partitions obtained from the uniform mesh by successively subdividing
the first interval into half

m E EO e A
10 73.768 11.306 .2950 2.34(+7)
11 58.853 10.278 L4705 5.85(+6)
12 42.286 9.421 .6922 1.45(+6)
13 27.357 8.696 . 8457 3.45(+5)
14 17.634 8.075 .9340 7.49(+4)

15 13.580 7.530 . ouu7 1.41(+4)
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Table 7
Problem B with e = 1, B = 5/2
Uniform mesh, IIluollE = .071070
m E EO 0 »
s 43.462 32.317 . 9759 1.126(+2)
10 22,080 16.158 . 9939 1.757(+2)
20 11.083 8.079 . 9984 7.568(+2)
40 5.547 4,039 . 9932y 3.142(+3)
80 2,774 2,019 . 99990 1.281(+4)
Table 8

Problem B with a = 1, B = 5/2
Approximately optimal mesh, I"uOHE = .071070

m E EO 6 w
5 33.869 32,317 .9466 3.577
10 16,519 16.158 . 9694 1.676
20 8.153 8.079 .9823 1.755
40 4,049 4,039 . 9894 1.788

80 2.018 2,019 .9933 2.437
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Table 9
Problem B with a = 5, § = 9/10
Uniform mesh
m E EO e ®
5 49.477 18.174 .9059 4.049(+3)
10 26.554 9.087 L9742 1.229(+4)
20 13.530 4,543 . 9934 4.621(+y4)
40 6.797 2.271 . 9983 1.808(+5)
80 3.403 1.135 .9995 7.173(+5)
Table 10
Problem B with a = 5, B = 9/10
Approximately optimal mesh
m E EO e )
5 17.021 18.174 .7988 2.617
10 9.181 9.087 .9217 2.822
20 4,521 4.543 . 9585 2.324
40 2.254 2.271 . 9820 1.661
80 1.138 1.135 . 9958 1.614




- 53 -

Table 9
Problem B with ¢ = 5, B = 9/10
Uniform mesh
m E EO 3] ®
5 49,477 18.17u .9059 4.049(+3)
10 26.554 9.087 L9742 1.229(+4)
20 13.530 4,543 .9934 4.621(+4)
40 6.797 2.271 . 9983 1.808(+5)
80 3.403 1.135 ,9995 7.173(+5)
Table 10
Problem B with a = 5, B = 9/10
Approximately optimal mesh
m E Eo 0 I
5 17.021 18.174 .7988 2.617
10 9.181 9.087 ,9217 2.822
20 4,521 4,543 .9595 2.324
40 2,254 2.271 .9820 1.661
80 1.138 1.135 . 9958 1.614




Table 11

Probiem B: Approximately optimal mesh for m = 10
Case Bl: a=1, B = 5/2
Case B2: a =5, = 9/10

J
3 Case Bl Case B2
0 .0000 .0000
1 .0237 14192
2 .1859 .6918
3 .3001 .7715
y .5218 .8255
5 .6872 .8673
6 <7754 .9016
7 8442 .9309
8 +9025 .9565
9 .9538 .9794

10 1.0000 1.0000
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